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The derivation of low temperature expansions for the 
mixed spin Ising model 

R G Bowers and B Y Yousift 
Department of Applied Mathematics and Theoretical Physics, University of Liverpool, PO 
Box 147, Liverpool L69 3BX, UK 

Received 13 September 1983 

Abstract. The derivation is discussed of low temperature (high field) expansions for the 
free energy per spin of the mixed spin Ising model. Both the direct method and the method 
of partial generating functions are considered. The lack of symmetry between the two 
sublattices considerably complicates the problem. Results are given, in the field grouping, 
for a number of two- and three-dimensional lattices. 

1. Introduction 

Mixed-spin Ising models (Schofield and Bowers 1980, 1981, Bowers and Schofield 
1981, Yousif and Bowers 1983a, b, Bowers and Yousif 1983) are of interest for two 
main reasons. First, they have less translational symmetry than is usual-which is 
noteworthy in the light of the universality hypothesis. Second, they are well adapted 
for the investigation of a certain simple kind of ferrimagnetism (NCel 1948). 

Before the present project began, series expansion studies of mixed spin Ising 
models were restricted to the high temperature regime (Schofield and Bowers 1981). 
Low temperature (high field) expansions for the standard ‘single spin’ models had, 
however, been available for some time. Much of the work was for spin-; (Sykes et al 
1965, 1973b) but this had also been extended to other spin values (Fox 1972, Sykes 
and Gaunt 1973). 

This paper is concerned with the techniques which are necessary for the generation 
of low temperature (high field) expansions for mixed spin Ising models. Where possible 
the theory is given without restriction on the (two) spin magnitudes and in a style 
which generalises previous work-particularly that of Sykes and Gaunt ( 1973). Results 
are given for mixed spin-$/spin-1 Ising models on the honeycomb (HC), simple quadratic 
(sQ), simple cubic (sc) and body centred cubic (BCC) lattices. These have already 
found one published application-the study of the shape of the critical isotherm in 
mixed spin models (Yousif and Bowers 1983b). 

Mixed spin Ising models have loose packed lattices of N sites. These lattices can 
be decomposed into two interpenetrating sublattices A and B in such a way that each 
site of A and q nearest neighbours which all belong to B (and vice versa). The sites 
of A and B are inhabited by spins of magnitude SI and S2 respectively. The Hamiltonian 
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takes the form 

where each ‘spin’ S i i  takes the 2S1 + 1 values - S,, - Si + 1, . . . , + Si and each ‘spin’ 
Si i  takes the 2S2+1 values-S2,-S2+1,. , . , S2.  In ( l . l ) ,  the first summation is over 
all pairs of nearest neighbour sites in the lattice whilst the second and third summations 
are over all sites of the A and B sublattices respectively. 

The quantities HA, mA and HB, mB are magnetic fields and magnetic moments per 
spin for the A and B sublattices, the notation being obvious. If the interaction constant 
J is positive, alignment of the spins is preferred and the situation is potentially 
ferromagnetic. If this constant is negative, the spins on one sublattice prefer to be 
antiparallel to the spins on the other and the situation is potentially ferrimagnetic (or 
perhaps, in the case S1 = Sz, antiferromagnetic). 

In the following sections of this paper, attention is restricted to the investigation 
of perturbation series which start from ground states in which all the spins on the 
lattice are parallel and ‘fully up’. (Fully up spins have Sii = St or S i j  = S2. )  Each spin 
S f i  ( S i j )  has accessible 2S1 (2S2) excited states. A configuration of excited spins 
corresponds to a perturbed state of the lattice. The systematic consideration of such 
configurations-in the manner described below-yields perturbation series for 
thermodynamic properties. 

The canonical distribution is employed and there are three external parameters-the 
temperature T and the two magnetic fields H A  and HB. Perturbations are described 
using the variables 

u = exp[-PJ/(S1Sz)I, CL = exp(-PmAHA/Si), U = ~ x P ( - P ~ B H B / S Z ) ,  

where P = l / (kT)  and k is Boltzmann’s constant. The series are of the two standard 
types (Sykes et a1 1973b). If one fixes the temperature-and therefore u-high field 
series in p and v can be obtained. This procedure can be followed irrespective of the 
sign of J. (If J < O ,  the ground state is still suitably ordered by sufficiently high 
unidirectional fields.) Series of the second type result when one fixes the fields HA 
and HB (at zero). Low temperature series in the variable U can then be obtained. 
These apply directly when J > 0. A preferred direction (‘up’) is distinguished either 
using the fields HA and HB (which are later switched off) or, if that fails, arbitrarily. 
The ferromagnetic interactions then cause the spins to align in this direction in the 
ground state. Low temperature expansions can also be made relevant to the case 
J < 0. This is achieved by transforming the ferrimagnet in a standard way (Bowers 
and Yousif 1983) to a ferromagnet with the same value of (JI but with the field on 
one sublattice reversed. Low temperature expansions of this equivalent ferromagnet 
can then be employed. 

(1.2) 

2. Linkage rule 

We start by developing a perturbation approach for the energy levels of (1.1). 
The values accessible to spins S f i  and S i j  on the A and B sublattices are respectively 

SI - x where x = 0, 1 , .  . . , 2 S ,  and S2 - y where y = 0, 1 , .  . . , 2Sz. It is convenient to 
use the quantities x and y to label the states. Let N f  be the number of spins in the 
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xth state on the A sublattice and N ;  be the number of spins in the yth state on the 
B sublattice. Let N;; be the number of (nearest neighbour) links of the lattice joining 
spins in the states x and y .  The contribution to (1.1) from spin-spin interactions can 
be put in the form 

where the summations are over all ordered pairs ( x ,  y ) .  
The first summation in (2.1) is equal to the number of links on the lattice, which 

is 1qN. Our intention is to rewrite the second summation so that all reference to the 
single spin ground states is removed. Each state x on A has q links attached to it. 
The total number of bonds attached to states x is therefore 

and similarly 

Thus 

Equations (2.3) and (2.4) allow (2.1) to be rewritten in the form 

E = - f q J N + - ( q S ,  J xN:+qS, yN;-  xyN$?).  (2 .5)  
xso Y’O (X,Y) 

X.Y +o 
s1 s2 

The contributions of the single spin ground states have been explicitly excluded in 
(2.5), simply because they vanish. 

3. Series expansions 

Each perturbed state has a corresponding Boltzmann factor 

X.V#O 

P ~ B H B  -~ PmAHA x N f - -  y N f ] .  
s, x>o s2 Y > O  

This follows from (2 .5 )  when the energy of interaction with the magnetic field (see 
(1.1)) is included. 

An expansion for the (perturbative) partition function may be derived directly 
from (3.1). It takes the form 
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where the variables are as at (1.2), 

r =  c xN:', t =  yNf, d =  XYN;;,  (3.3) 
x > o  Y Z O  (X.Y)  

x . y + o  

and f l N ( r ,  t, d )  is the number of spin configurations with given r, t and d. It is useful 
to regard f l N ( r ,  f, d )  as a sum-over  all values of N:', Nf,  N;; satisfying (3.3)-0f 
the number of configurations with given N:', N f ,  N;;. This yields a diagrammatic 
interpretation of the expansion and one sees that f l N ( r ,  t, d )  and (therefore) AN(r ,  t, d )  
are polynomials in N. 

The expansion for the free energy per spin F may be obtained by generalising the 
method given by Domb (1960). One finds that 

F=-$qJ-~(m,HA+m&ls)-kTlnA(p, v, U), (3.4) 

where In A ( p ,  v, U )  is the coefficient of N in (3.2). To deal successively with more 
and more excited spins, one writes 

In A(P, v, U )  = E  gr,t(u)prvr. 
1, r 

The coefficients g, , (u )  are then polynomials since, from (3.2), one has 

gr,r( U) = a[r ,  f, 
d 

(3.5) 

where a[r ,  r, d ]  is the coefficient of N in the sum, over all possibilities consistent with 
(3.3), of the degeneracies of the states N:', N f ,  N;;. These degeneracies are the 
numbers of embeddings of each given low temperature (high field) configuration which 
the lattice can sustain. One point is worth making. If q is odd and at least one of S1 
and S2 is non-integral, then (3.5) is not a polynomial in U but in z = U"'. 

The direct derivation of polynomials g, ,  is, in principle, straightforward. By way 
of illustration the case S1 = 4, S2 = 1 on the SQ lattice will be considered. For these 
spin values (on any lattice), there is only one perturbed state x = 1 possible on any 
site of A whilst there are two perturbed states y = 1 , 2  possible on sites of B. For the 
present purposes it is convenient to fix attention on g1,2. Here one has, from (3.3), 
the possibilities (i) N f  = 1, Nf = 2, N ;  = O  and (ii) Nf = 1, Nf =0, N ;  = 1. In case 
(i), there are (a) $N($N-4)(4N-5) configurations with N t f  = O  (b) 2N(&-4) 
configurations with N t f  = 1, and (c) 3N configurations with Nt f  = 2. (All these 
have N t ;  = O . )  In case (ii), there are (a) tN(4N-4) configurations with Nc? = O  
and (b) 2N configurations with N t ?  = 1. (All these have N t f  = 0.) If one takes the 
coefficient of N from each of the above and awards the appropriate power of U, one 
finds, from (3.4)-(3.6), that 

(3.7) 

(The intermediate result is given to facilitate comparison with the preceding calcula- 
tions.) 

In the case where all the perturbed spins on A are in the same state x and all the 
perturbed spins on B are in the same state y, the combinatorial factors needed in 
calculations of the above type are the same as those for the spin-4 Ising antiferromagnet 
(Brooks and Domb 1951, Domb 1960). However, if x and/or y vary, the underlying 
configuration must be reweighted to allow for all possible decorations. This is already 

,&2( U) = 5u8 - 8u7+ 3u6- 2u8 + 2u6 = 3u8- 8u7+  5u6. 
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clear with a perturbation involving just two overturned spins on one sublattice. There 
are aN(;N-  1) configurations if the states are the same and $ N ( $ N -  1) if they are 
different (the underlying configuration can then be decorated in two ways). 

A systematic approach of the above type yields a useful number of g,, Polynomials 
for smaller r and t were first calculated in this’ way. However, the final-more 
extensive-calculations were done using the procedure outlined in § 4 which exploits 
the sublattice division more effectively. 

4. Methods of partial generating functions 

For the present problem one can define partial generating functions which are 
equivalent to the perturbative free energy, when the number of excited spins on one 
sublattice-but not on the other-is held fixed. The method is a generalisation of that 
available for loose packed ‘single spin’ Ising models for which there is a well developed 
theory not only for spin-; (Sykes et a1 1965) but also for higher spin (Sykes and Gaunt 
1973). It is convenient to describe the technique by continuing with the example of 
SI = ;, S2 = 1, and the SQ lattice. 

It helps to be concrete, so it will be supposed, first, that there are two overturned 
spins on the A (i.e. spin-i) sublattice. Now, quite generally, an excited spin casts a 
shadow-which in the present case is square-n its q nearest neighbours on the other 
sublattice. A configuration of excited spins on one sublattice will in this way give rise 
to a set of, possibly overlapping, shadows. To return to the example, here, the two 
shadows can overlap along an edge, at a vertex, or not at all depending on whether 
they are cast by spins which are in A, respectively, nearest neighbours, next nearest 
neighbours, or neither of these. The result is that six, seven or eight spins of the B 
sublattice are, respectively, in shadow. 

Any site of the B sublattice which is perturbed yields one link for each shadow in 
which it lies. With this in mind one can construct the appropriate partial generating 
function (PGF). Consider first, with Sykes and Gaunt (1973), the case in which B is 
also a spin-; sublattice. The total contribution to AN is then 

~ ~ ~ ( 1  +bx)4(1+b2X)2(1 +X)N/2-6+Ny2(1 + bx)6(1 + ~ A ) ( I  + X ) ~ / 2 - 7  

+aN(;N - 9)y2( 1 + b ~ ) ~ (  1 + x ) ~ / ~ - ’ .  (4.1) 
Here, each term represents the total contribution to AN from a given configuration 
of two overturned spins on A and all possible spin states on B (which is, temporarily, 
spin-;). The first factor in each term in (4.1) is the number of ways each two-spin 
pattern can be embedded in the lattice. The variables in (4.1) are obtained by 
comparison with (3.2). Thus 

y = puqs2, x = Y U Q S l ,  b = u-l, (4.2) 
and each overturned A spin yields y, each overturned B spin x, and each link or bond 
U-’. (There should be no confusion between this and the previous use of x and y.) 

To make (4.1) and (4.2) clear, it should suffice to explain the first term. This 
corresponds to the case in which the shadows overlap along an edge. There are N 
such configurations. The four spins belonging to only one shadow each contribute a 
factor l + b x :  the 1 when unperturbed, the bx when overturned. The two spins on 
the common edge similarly yield 1 + b2x each. The $ N - 6  spins outside the shadow 
each yield 1 + x  (they can make no excited links). 
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The contribution to In A corresponding to (4.l)-the PGF-is, as explained in 8 3, 
the coefficient of N in the given expression. This is 

y2(1+bx)4(1 +bzx)2(i + X ) - ~ + y ~ ( i + ~ x ) ~ ( i + ~ ~ x ) ( i + x ) - 7 - q y 2 ( 1  + ~ ( i  + X p .  

(4.3) 

The connection between 'partial partition functions' and partial generating functions 
is always of this simple form and quantities of the second type are usually written 
directly. The nth PGF is a sum, over all possible shadow patterns, of terms each of 
the form 

(We find it convenient to include terms such as y" in our definitions.) In (4.4), G is 
the part linear in N in the number of ways of embedding the given shadow pattern 
and am is the number of sites in B which belong to exactly m (single A spin) shadows. 
(The quantity m is limited by the coordination number of the lattice.) 

It is now easy to describe what happens when B reverts to spin 1. Then x (4.2) 
corresponds to a spin in the first excited state and one needs to add 

x = y 2 p ,  (4.5) 

(see (3.2), (3.3)) to denote a spin in the second excited state. Furthermore, according 
to the above linkage rule bonds between y and X must carry a contribution b2 = U-'. 

Since there are now three states on each B site, all this means that (4.3) becomes 

y2( 1 + bx + b2X)4( 1 + b2x + b4X)2( 1 + x + X)-6+ y2( 1 + bx + b2X)6( 1 + b2x + b4X) 

x (1 + x  +x)-'-$y2(1+ bx + bZX)8( 1 + x +x)-S. (4.6) 

It is clear that, given any PGF for the spin-; Ising model, a corresponding one for 
the present mixed spin model can be obtained by replacing each term of the form 
(4.4) by 

y "G n ( 1 + b"x + bZ"X)"m( 1 + x + X) -'"m. 
m 

(4.7) 

In this way, using published results for the spin-; king model (Sykes et a1 l965,1973a, 
c), what will be called type A partial generating functions for our mixed spin model 
have been constructed (Yousif 1983). 

Thus far only the case in which the number of excited spins on the spin-; (or A)  
sublattice is held fixed has been discussed. The other case can be investigated using 
the same variables and very similar techniques. Suppose two spin-1 objects on the B 
sublattice of a SO lattice are excited. Then they give rise to the same shadow figures 
as previously but now the single spin square shadows must be decorated in all possible 
ways with x and X. This leads to each contribution at (4.3) splitting into three. Each 
term y2 must be replaced successively by x2 ,  2xX and X2. Also each factor involving 
b and x in (4.3) must be replaced by new factors involving b and y. These vary even 
amongst each set of three 'similar' contributions since different patterns of xy and Xy 
bonds are found. The PGF corresponding to (4.1) can be calculated directly as described. 
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The result is 

x2( i  + w4(1 + b2y)2( i  + Y ) - ~ + ~ x x ( I  + by)z( i  + b2y)2(i + b3y)2(1 + y ) - 6  

+ ~ ~ ( i + b ~ y ) ~ ( 1 + b ~ ~ ) ~ ( 1 + ~ ) - ~ + ~ ~ ( i + b y ) ~ ( i + b ~ ~ ) ( i + ~ ) - ~  

+ 2 x x ( 1 +  byl3(i  + b ’ ~ ) ~ ( 1  + b3y)(1 +y)-7  

+ ~ ~ ( i + b ~ y ) ~ ( i + b ~ ~ ) ( i + ~ ) - ~  

-$x2(i + by18(i + y)-8-;xx(i + by)4(1 + b2y)4(1 + y)-8 

-$X’( 1 + b’y)*( 1 + y ) - 8 .  

In this hierarchy (4.4) is replaced not by (4.7) but by 

(4.8) 

which is to be summed over all possible decorated shadow patterns. In (4.9), is 
the number of sites in A which belong to the shadow of m x spins and I X spins and 
T is the symmetry number of the decoration ( 1  for x2 and Xz and 2 for xX in the 
example). A few PGFS of this second kind (type B )  have been calculated on the four 
lattices of interest (Yousif 1983). (It is already clear from (4.8) that the calculations 
soon become rather heavy.) The known spin-; king results again provide a useful 
starting point. 

5. High field polynomials 

The high field polynomials g,, can be extracted from the PGFS in various ways. The 
basic idea is simple. Given PGFS of one type (say A)  to order nA, exact information 
on all spin perturbations of up to nA spins is available. This is because the information 
is exact to order nA on one sublattice and to all orders on the other. Thus, by expanding 
PGF 0 to degree nA in x and X, PGF 1 to degree nA - 1, . . . , PGF nA to degree 0 and 
making the substitutions (4.2) and ( 4 . 9 ,  one obtains more than enough information 
to determine all the coefficient polynomials g,, with r + t s  nA. (There is more than 
enough information since each factor X becomes v’.) 

If PGFS of both types are simultaneously available, further progress can be made. 
Suppose that one has type A PGFS to order nA and type B to order nS Then one has 
exact information on all spin perturbations of up to n A + n B + l  spins. This can be 
extracted by the following procedure. For type A, expand PGF 0 to degree nA + nB + 1 
in x and X, PGF 1 to degree nA + I t B , .  . . , PGF nA to degree nB + 1. For type B, expand 
PGF 0 to degree nA + nB + 1 in y, PGF 1 to degree nA + nB, . . . , PGF nB to degree nA + 1. 
Substitute for x, X, y and b from (4.2) and (4.5) and pick out the coefficient polynomials 
g , ,  with r + t C nA + nB + 1. (One will again have more than enough information since 
X is replaced by v’.) This procedure will cover spin perturbations of not more than 
nA A spins and nB B spins twice and hence provide a useful check. Spin perturbations 
outside this region-but involving not more than nA + nB + 1 spins in total-will be 
covered once: by type A PGFS if nB is exceeded on the B sublattice and vice uersu. 

Procedures of the above kind have been used for all the four lattices of interest 
here. In this way all high field polynomials g , ,  with r + t S 7 have been found on the 
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SQ, sc and BCC lattices. On the HC lattice rather more spin-; PGFS are known and the 
calculations have been pursued to r + t S 10. 

Many applications of the present work will need the detailed information contained 
in the g , ,  and we had hoped to represent these polynomials here. It seems clear, 
however, that they would take far too much space. We have therefore chosen to 
compress our data and-in the fashion of the publications of Sykes and collaborators 
referred to above---quote the high field polynomials L,t. In the present case these 
are given by 

These are relevant to the special model of Schofield and Bowers (1980,1981) in which 
mA/S1 = mB/S2.  In this case, in a uniform field HA = H B ,  from (1.2), p = v and (3.5) 
can be rewritten as 

In A b ,  U )  =I L, (u)p” .  (5 .2 )  

The high field polynomials L, are given in an appendix (in which L, is written in place 

As mentioned previously, a study, based on the present work, of the shape of the 
critical isotherm in the mixed spin ferromagnet has already been published (Yousif 
and Bowers 1983b). This uses the L,. Other possible areas of application-of the L, 
or g,,,-include low temperature ferromagnetic critical behaviour and the interrelation 
between uniform and staggered descriptions of ferrimagnetic critical behaviour (Bowers 
1981, Bowers and Schofield 1981, Yousif and Bowers 1983a, Bowers and Yousif 
1983). These must clearly form the subject of separate studies. 

of L,(u)). 

Appendix. High-field polynomials L, 

Body centred cubic lattice 

L1 =&44+&8 

L2 = a u 8  + 4u 11 - 4u 1’ - bu 16 

L3 = -$U ’’ + 1 8 ~  l4 - 32 U l S  + 1 4 ~  l6 + 1 4 ~  l 8  - 3 2 ~  l9 + 18 U 2o + :U 24 

L4 = i~ l6 + 5 6 ~  l7 - 1 4 4 ~  + 1 1 2 ~  l9 + 2 U’’ + 14th ’’ - 6 0 6 ~ ~ ~  + 6 6 0 ~  23 - 2 2 8 ~ ’ ~  

+28u2’ - 112uZ6+ 1 4 4 ~ ” - 6 0 ~ ’ ~ - Q ~ ~ ‘  

Ls = 1 3 3 i $ ~ ’ ~ - 4 4 8 ~ ‘ ~  +534uZ2+64d3+ 5 6 1 ~ ’ ~ - 5 0 8 8 ~ ’ ’ +  8800~’~ 

-5844uZ7+ 1 9 1 4 ~ ’ ~ - 4 3 1 2 ~ ~ ~ + 8 4 3 6 ~ ~ ~ - 6 6 1 2 ~ ~ ~ +  1 8 9 7 ~ ~ ’  

- 2 2 4 ~  33 + 5 0 4 ~  34 - 4 8 0 ~ ~ ~  + 165 U 36 + &ju40 

L6 = 252U 23 - 1034:~ 24 + 1 7 8 4 ~ ”  - 162U 26 - 4762’  - 8 0 9 8 ~ ’ ~  + 12 564U 29 

+5326u30- 14 4 9 2 ~ ~ l - 5 1  459$u3’+174 5 7 7 $ ~ ~ ~ - 2 1 1  l10u34 

+ 118 6 8 0 ~ ~ ~ - 4 2  5 5 9 = & ~ ~ ~ + 5 3  9 7 6 ~ ~ ~ - 7 1 6 3 8 ~ ~ ~ + 4 4  5 8 8 ~ ~ ~  

- 10 97O4u4O+ 1 0 0 8 ~ ~ ’ -  1 6 8 0 ~ ~ ~ +  1 3 2 0 ~ ~ ~ - 3 6 9 ~ ~ ~ - & ~ ~ ~  

t Interested readers may obtain the g,,, by writing directly to the authors. 
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L7= 4 1 0 ~ ’ ~ -  1 9 0 8 ~ ’ ~ + 3 7 9 6 ~ ~ ’ ~ - 1 1 4 8 ~ ’ ~ - 1 0 0 6 ~ ~ ’ - 6 5 1 2 ~ ~ ’  +12 7 3 7 ~ ~ ’  

+2O 1 0 8 ~ ~ ~ - 7 8  6 0 8 ~ ~ ~ - 3 8 0  468u3’+ 1932 8 4 7 ~ ~ ~ - 3 3 2 6 0 1 6 ~ ~ ~  

+2792 9 2 4 ~ ~ ~ -  1522 1 4 8 ~ ~ ~ + 1 8 9 4  862~~’-3177 9 1 6 ~ ~ ~  

+2970 3 6 6 ~ ~ ’ -  1440 8 1 6 ~ ~ ~ + 4 7 7  3 7 8 ~ ~ ~ - 4 2 7  7 0 0 ~ ~ ’  

+440 9 5 6 ~ ~ ~ - 2 3 1 0 9 2 ~ ~ ~ + 5 0  0 0 4 ~ ~ ’ -  3 3 6 0 ~ ~ ~  

+ 4620” - 3 1 6 8 ~ ’ ~  + 8 5 8 ~ ”  + i$uS6. 

Simple cubic lattice 

L1 =+u3+1u6 

L2 =$u6”8-3u’-$u’’ 

L3 = -&U’ + 1 0 4 ~  ’’ - 1 8 ~  ’’ + 7 4 ~  ’’ + 7 4 ~  l 3  - 1 8 ~  l 4  + 1@u l 5  +;U’ 

L4 = 25:~’~-  6 3 ~ ’ ~ + 5 5 ~ ~ ’ ~ + 5 6 ~ ’ ~  - 2 5 6 ; ~ ’ ~ + 2 7 9 ~ ’ ~  

- 8 6 ~ ’ ~  - 4 5 ~ ”  + 6 3 ~ ” -  28u21 -$uZ4 

L5 = 4 5 ~ ’ ~ -  143& l5 + 2 4 4 1 ~  16+ 1 5 0 ~ ’ ~ -  1666;~ l a +  2 8 3 5 ~  19- 1696~~’’-915~” 

+ 2 6 7 1 4 ~ ’ ~  - 2 1 2 8 4 ~ ~ ~  + 5 5 2 ~ ~ ~ +  1574~”-  168uZ6+ 63uZ7+&u3’ 

L6 = 6 6 ~  16- 222u17+ 7 2 1 4 ~ ’ ~ -  21 6578$u2’+ 16 665~’’ - 16 0 2 6 ~ ~ ’ -  7 1 6 7 ~ ’ ~  

+41 175$uZ4-50 4 8 4 ~ ~ ~ + 2 4  1 9 5 : ~ ~ ~ + 6 5 6 6 ~ ” -  17 2 9 2 ~ ”  

+ 11 1 3 3 ~ ’ ~ - 2 5 6 4 $ ~ ~ ~ - 4 2 0 ~ ~ ~  + 3 7 8 ~ ~ ~ -  1 2 6 ~ ~ ~ - & ~ ~ ~  

L7 = 94$u18- 192ui9+ 1 5 6 0 ~ ” -  1428gu’’ - 17 904u2’+66 828uZ3-98 3 2 7 1 ~ ’ ~  

-18 96Ouz5+345 2 7 3 ~ ~ ~ - 6 1 0 0 3 1 4 ~ ‘ ~ + 4 4 1 9 4 5 ~ ~ ~ + 9 7  9 5 9 ~ ’ ~  

-539 822u3’+533 7 3 9 ~ ~ l - 2 2 1  289u3’-26 4 2 3 ~ ~ ~ + 8 2  4 8 @ ~ ~ ~  

-45 

Simple quadratic lattice 

L1 = ;u2+;u4 

L2 = $U4+2u5- 2u6-4u8 

L3 = 43u6 - 8~ + 6~ - 8u9 + 5 U ’’ + &U l 2  

L4 = 8u7 - 
L5 = 1 1;~’- 14u9+48&,~‘’- 2 7 2 ~ ”  +4934u1’- 51Oul3+ 5 1 % ~  l4-4O4u 15+ 1 5 0 ~ ’ ~  

26u9-69u1’+ 8 0 ~ ” - 3 9 ~  l 2  + 2 0 ~  13- 1 0 ~  14-9u l6 

- 40u l7 + 17tu + &UZ0 

L6= 1 U’ + 16u9+ 5~ lo+ 3 2 ~ ”  - 656&12+ 1 6 4 2 ~ ’ ~  - 2 7 8 9 ~  l4+47623u Is  - 5 7 3 8 ~ ’ ~  

+ 4 3 0 0 ~  l7 - 262Gu + 1 4 5 2 ~ “  - 4 4 9 ~ ”  + 7 0 ~ ”  - 28 U’’ - & u ~ ~  
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L7 = 4u9 + 25u”+42u1’ - 4 6 ~ ” -  117th l 3  + 3326*d4- 8 5 2 0 ~ ’ ~  + 23 3 7 8 ; ~ ’ ~  

-40 9 1 4 ~ ” + 4 8  443uI8-48 686ul9+4O 777t~~O-23 7 8 8 ~ ”  

+ 10 2 7 6 $ ~ ’ ’ - 4 2 1 6 ~ ~ ~ +  1 1 4 5 ~ ~ ~ -  1 1 2 ~ ” + 4 2 ~ ’ ~ + ~ ~ ’ ~  

Honeycomb lattice 

L~ = $z3 +$z6  
= i 2 6 +  1 t z 7 -  1$z9-+z12 

L3 = 328-f~9-4fz10+ l$z” + 1$z” -4$z13+ 3215 + i z l 8  

L4 = 3tz9+ 1 $ ~ ’ ~ - 9 z ”  + 6 $ ~ ’ ’ + 4 $ ~ ~ ~ - 2 9 $ ~ ~ ~ +  l$z15+ 3 3 ~ ’ ~  
- 412 17- 1 1$zI8+ 9 ~ ’ ~ -  5zZ1 -$zZ4 

L5 = 3z10 + 62’’ - 102” + 7 6 ~ ’ ~  + 9 ~ ’ ~ -  93&” + 7$zI6+ 16@zI7- 6 3 ; ~ ’ ~ -  97$Z” 
1 2 7 + 1  30 + 144zZ0+ 15$zZ1- 1 3 0 $ ~ ” + 9 ~ ’ ~ + 4 0 $ ~ ’ ~ -  15zZ5+ 732 102 

L6= l$z”+ 1 5 ~ ’ ~ - 6 ~ ’ ~ - 6 ~ ’ ~ + 1 9 t ~ ’ ~ -  1 8 9 ~ ’ ~ - 1 2 ~ ’ ~ + 4 6 3 3 ~ ’ ~ - 3 0 3 ~ ’ ~  

-4022~’O+ 1O29$zz1 + 56:~”- 1 3 2 7 $ ~ ’ ~ + 2 7 6 a ~ ’ ~ +  7 5 0 ~ ’ ~  

-4832~‘~-  149z’’+378zz8- 1 5 ~ ’ ~ -  1 0 8 ~ ~ ~ + 2 2 $ 2 ~ ’  - 10$Z33-&Z36 

L7 = $z”+ 24z13+ 1 3 $ ~ ’ ~ - 4 6 i z ’ ~  +434zI6- 2 5 0 4 ~ ’ ~ -  2 4 1 ~ ~ ~ + 9 2 7 ~ ~ ~ - 6 6 1 t ~ ’ ~  

- 1 113&zZ1 +41831~”- 3 7 1 ~ ’ ~ -  7409$zZ4+ 3001$zZ5 

+ 59891~’~-6602$~’~-  1 9 5 0 ~ ” +  6 9 8 4 ~ ‘ ~ -  . 5 9 @ ~ ~ ~ - 3 6 0 3 ~ ~ ’  

+ 1282~232+712z33-903z34+22$z35+241$236 

- 3 1 $ ~ ~ ~ +  1 4 ~ ~ ~ + i $ ~ ~ ~  

L8 = 1$zl3 +28fz14+ 5 5 ~ ’ ~ -  88$2l6+ 3 7 6 ~ ’ ~ -  1 8 5 + ~ ’ ~ - 9 9 3 ~ ’ ~ +  1262$2”- 1 4 2 $ ~ ”  

-26894~”+ 10 9 3 8 ~ ’ ~ + 5 4 1 & ~ ~ ~ - 2 6  9O5$zz5+ 16 0 3 4 4 ~ ’ ~  

+28 46O$zz7-48 5302~’~-  10 2O6zz9+67 4993~~O-13 8 1 3 4 ~ ~ ~  

-49 437z3’+29 4 1 0 ~ ~ ~ +  17 4 9 0 $ ~ ~ ~ - 2 7  4 0 5 ~ ~ ~  

- 4 3 8 Q ~ ~ ~ +  13 0 5 6 ~ ~ ~ - 2 8 9 8 ~ ~ ~ -  2 4 8 5 $ ~ ~ ~ +  1 8 9 0 ~ ~ ~  

2 2  162 
-31$241-479I 4 ’ + 4 2 ~ ~ 3 - 1 8 ~ ~ ~ - 1  48 

L9 = $ z ” + ~ ~ z ’ ~ +  27215+ 1 2 1 4 ~ ’ ~ -  8 2 4 ~ ’ ~ -  8 9 ~ ~ ~ + 6 0 ~ ” -  2431$~’~+601f~’’  

+ 3 4 4 5 $ ~ ~ ~ - 6 0 8 5 $ ~ ’ ~ +  18 896tzz4+ 10 615$zZ5-69 9 1 8 ~ ’ ~  

+45 785;zz7+96 453zZ8-222 901$~’~-30 192$z30+405 3 2 8 1 ~ ~ ’  

-147 9 5 2 ; ~ ~ ~ - 3 8 5  6 1 9 1 ~ ~ ~ + 3 5 7  2 4 6 ~ ~ ~ +  179 6 4 1 4 ~ ~ ~  

-422 3 2 5 $ ~ ~ ~ +  15 9 4 6 $ ~ ~ ~ + 2 8 2  1 6 2 ~ ~ ~  

-99 037$z3’-98 323$z40+87 6 4 5 ~ ~ ’  +9783z4’-39 0 7 8 ~ ~ ~ + 5 8 3 8 ~ ~ ~  

+ 7 1 4 2 $ ~ ~ ~ -  3 5 9 1 ~ ~ ~ + 4 2 z ~ ~ +  8 7 3 ~ ~ ~ -  5 4 ~ ~ ~ + 2 2 $ z ~ ’  
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Llo = 1 4 ~ ’ ~  + l&l4+ 6 ~ ’ ~  + 30216+ 1934~”+ 5 % ~ ~ ~ -  4331rl9+ 3842”- 4 0 3 4 ~ ’ ~  

-33194~”+ 12 019$rZ3-10 1 5 5 $ ~ ’ ~ + 1 7  6252”+59 574:~’~ 

- 134 618frZ7+45 783zz8+270 4492zz9-689 57O&jz’” 

- 109 838%r3’+ 1681 7372z3’-868 6 4 5 ~ ~ ~ - 2 0 0 0  2 9 7 : ~ ~ ~  

+2655 106$jr3’+ 1044 865:~~~-3931 8 0 9 ~ ~ ’ + 5 9 1  453:~~’ 

+3382 1 8 9 ~ ~ ~ -  1848 4 2 0 ~ ~ ’ -  1626 027r4’+2013 867&r4’ 

+237 3 5 1 4 ~ ~ ~ -  1248 4 6 2 $ ~ ~ ~ + 2 5 7  7 7 0 & ~ ~ ~ + 4 1 9  3 6 5 & ~ ~ ~  

-241 0 8 3 ~ ~ ~ - 5 0  9 6 0 $ ~ ~ ~ + 1 0 1 7 4 5 ~ ~ ~ - 1 0  7864~~O-17 9 0 5 ~ ~ ~  

+ 63362” - 5 4 ~ ~ ~  - 1487:~’~ + 6 7 4 ~ ~ ’ -  2742” -&r6’. 
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